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a b s t r a c t

Motor imagery brain-computer interface (MI-BCI) is a promising tool for neuro-rehabilitation. The
real-time MI-BCI enables people with motor dysfunction disease to interact with the outside world.
This work develops a Matlab-based real-time MI-BCI (MartMi-BCI) software, which involves two main
modules, a real-time EEG analysis platform (RTEEGAP) and a model training platform (MTP). The
RTEEGAP can realize real-time EEG analysis in time, frequency, and spatial domains and perform
MI experiments with real-time feedback based on the OpenBCI device. Simultaneously, the MTP can
train the CSP-based MI classification model and visualize the time–frequency reaction map. We hope
the MartMi-BCI software can promote the development of EEG-based MI paradigm design and EEG
classification algorithms.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Motivation and significance

With the development of brain computer interface (BCI), scalp
lectroencephalography (EEG) has become a popular tool for
tudying brain diseases and functions. And as a well-known
xemplification of BCI interaction, motor imagery (MI) has been
idely used to get the intention from the subjective [1,2]. The
EG-based MI-BCI can be applied both in biomedical fields such
s the control of wheelchairs [3] or mechanical arms [4] and
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rehabilitation systems [5], as well as non-biomedical fields, such
as entertainment and gaming [6,7].

Currently, many different types of methods are used in MI
paradigm. Common Spatial Pattern (CSP) [8] is one of the most
effective methods for feature extraction. It acquires the most rep-
resentative features by means of the spatial filters in every two
different classes. And based on CSP, Sub-Band CSP (SBCSP) [9],
which added the frequency band division procedure and Filter
Bank CSP (FBCSP) [10,11] with feature selection procedure were
proposed to boost the performance of MI tasks. In addition to the
CSP algorithm, some works also attempt to combine temporal
and frequency features [12,13]. Riemannian approach [14] was
another effective approach to extracting EEG-based MI features.
However, the feature dimension will be significantly increased
ttps://doi.org/10.1016/j.softx.2023.101371
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hen the EEG channel rises. Although EEG-based MI-BCI has been
esearched for many years, there are still many problems to be
olved. One of the critical issues is the low classification accuracy.
o improve the accuracy, we adopted our previous work (an
lgorithm combined with divergence-based CSP with SVM) [15]
o build a model training platform, achieving a high-performance
CI system. Simultaneously, another key problem is the optimum
esign of MI paradigm. A software platform that can easily design
nd testing the paradigm of MI task with feedback is urgently
eeded.
OpenBCI, as a popular open-source BCI platform, has been

sed in a variety of experiments to record the EEG signals, such
s rehabilitation robot [16], P300 analysis [17], SSVEP analysis
16,17], MI tasks [17–19] and Emotion recognition task [20]. Com-
ared with other BCI devices, it has a lower price and open-source
ardware and GUI software. Meanwhile, it can also be compatible
ith standard EEG electrodes. Therefore, it is very convenient for
esearchers to conduct the experiment. Although the website of
penBCI offers the software application programmed by Process-
ng language to collect EEG data, there is no unified open-source
latform for OpenBCI that can be directly used to design the
I paradigm with real-time feedback and training-efficient MI
lgorithms that can visualize the time–frequency brain activation.
This paper introduces a Matlab-based real-time MI-BCI

MartMi-BCI), which has complete MI paradigm functions, in-
luding extracting EEG data, preprocessing data, analyzing data
n temporal and spatial fields, training models, and giving real-
ime feedback. And the platform is easy for people of all levels
o operate because it uses a friendly graphical interface and it
upports an open-source OpenBCI device. At the same time, the
latform can also visualize different person’s temporal-frequency
eaction maps (TFRM), enabling the platform to enhance the
nterpretability of the model.

. Software description

.1. Software architecture

Fig. 1 demonstrates the architecture of the proposed MartMi-
CI software. The MartMi-BCI contains two major platforms: a
eal-time EEG analysis platform (RTEEGAP) and a model training
latform (MTP). The RTEEGAP supports multi-channel EEG stream
isplay, EEG signal filtering using FIR and IIR filters, spectral anal-
sis with the FFT algorithm, topography analysis, data recording,
nd real-time motor imagery experiments. The MTP can evaluate
he quality of the motor imagery data with CSP-based algorithms
nd visualize the TFRM of the subject. Meanwhile, it provides the
TEEGAP with a well-trained motor imagery model to achieve
eal-time motor imagery tasks.

.2. Software functionalities

.2.1. Real-time EEG analysis platform (RTEEGAP)

.2.1.1. Preprocessing configuration. As shown in Fig. 2(a), the
erial port setting, display setting, and filtering setting can be op-
rated on the preprocessing configuration panel. When entering
he RTEEGAP, we need to set the serial port correctly to connect
he OpenBCI device. Firstly, enter the serial number of the Open-
CI device, and then click the ‘‘Open Serial Port’’ button and ‘‘Start
eceiving Data’’ in turn. If the device is connected successfully,
he ‘‘Serial Port Status’’ will display ‘‘Successful’’. Simultaneously,
he ‘‘Load Rate’’ displays the computational load of the RTEEGAP
oftware. If the load rate exceeds 90%, it indicates that the per-
ormance of the current computer is relatively low, which may
ffect the real-time display of the software. The ‘‘Unpacked Data’’
emonstrates the number of samples received in one refresh

Fig. 1. The overview of the MartMi-BCI architecture.

interval (the default refresh interval is set to 0.5s). Besides, we
can adjust the amplitude of the EEG stream displayed in Fig. 2(b)
by setting the ‘‘Zoom Rate’’. Note that RTEEGAP software uses the
function ‘decodeOpenBCIData’ to decode the OpenBCI serial data.
Users can modify this function to make this software compatible
with other EEG recording systems.

On the other hand, we can define different filtering settings
in this panel. Two types of band-pass filters, namely the Finite
Impulse Response (FIR) filter, and Infinite Impulse Response (IIR)
filter, are supported for preprocessing the raw signals. When the
order and cut-off frequency (Fc1 and Fc2) are entered, we can
click the ‘‘Response’’ button to check the magnitude–frequency
and phase-frequency responses of the filter. Then, click ‘‘OK’’ to
apply the set filter to the raw signal.

2.2.1.2. EEG stream display. Once the software starts receiving
data, the preprocessed multi-channel EEG stream is displayed in
Fig. 2(b). The default refresh interval is set to 0.5s, and it can
be modified by changing the ‘‘DispMs’’ field value in the global
variable ‘‘IntervalTime’’. At the same time, the default display
length and sampling rate are set to 10 s, and they can be adjusted
in the global variable ‘‘DispSec’’ and ‘‘SampleRate’’.

2.2.1.3. Spectral analysis. Fig. 2(c) shows the FFT and power spec-
tral analysis. The x-axis values of the FFT figure represent the
frequency in Hz, while the y-axis values of the FFT figure repre-
sent the relative amplitude. Each line corresponds to one channel,
and the color matches the color of the EEG stream displayed
in Fig. 2(b). Meanwhile, the normalized power spectral over all
channels is presented in the bottom figure, considering five typ-
ical EEG bands, including Delta (1–3 Hz), Theta (4–7 Hz), Alpha

(8–13 Hz), Beta (14–30 Hz), and Gamma (31–45 Hz) bands.
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Fig. 2. The Matlab-based GUI of real-time EEG analysis platform. The panel includes following parts: (a) preprocessing configuration, (b) EEG-stream display, (c) FFT
nd power display, (d) topography analysis, (e) data recording, (f) motor imagery experimental settings.

Fig. 3. The four-stage workflow of a motor imagery trial.

.2.1.4. Topography. The EEG topography visualizes the activated
rain regions by computing the spectral power value of each
hannel. In Fig. 2(d), the topography of three sub-bands (Theta,
lpha, Beta) and all EEG bands is illustrated. The function of
lotting topography is based on the convolution operator. First,
ark the coordinates of each channel on a map matrix of size
28 × 128 (corresponding to a circular area with a radius of
4) according to the actual channel position. These coordinates
an be set in ‘‘x’’ and ‘‘y’’ field values in the global variable
‘ElectrodeMap’’. Then, the weights of all channels are computed
nd stored at the corresponding coordinate positions in the ma-
rix. Finally, the map matrix is convoluted by a 128 × 128
aussian kernel with a standard deviation setting of 25, and the
opography is obtained.

.2.1.5. EEG data recording. When the software is receiving data,
e can use this panel to record the received data and mark the
vent. We can click the ‘‘Start Record’’ to start the EEG recording.
uring EEG recording, the event can be selected and added to the
ecord file. The record mat file consists of one structure variable
amed ‘‘RecordData’’, where the ‘‘NowData’’ field matrix stores
he recorded preprocessed EEG data, and the ‘‘Time’’ and ‘‘Sam-
le’’ represent the total recorded time (seconds) and samples,
espectively.

.2.1.6. Motor imagery experimental settings. The motor imagery
xperimental setting panel can customize different motor im-
gery paradigms. Usually, the motor imagery paradigm can be

divided into four stages, i.e., preparing stage, cue stage, imagery
stage, and relax stage. Fig. 3 depicts an example of a classic motor
imagery paradigm. In this software, the time of each stage can be
set in the corresponding text box. Meanwhile, the motor imagery
task can be edited in the corresponding list. The default motor
imagery task list contains four typical motor imagery tasks: Left
Hand, Right Hand, Tongue, and Feet. The illustrative pictures are
stored in ‘‘\Data\Picture’’ folder. The number of trials of each task
is determined in the ‘‘Trials’’ text box. By editing the ‘‘Save Path’’
text box, the save path of the record motor imagery data file can
be defined. All above settings are able to be saved as a config
file, and its save path is defined in the ‘‘Config File’’ text box.
When the program is next started, the config file can be loaded
directly to set the paradigm. After setting the parameters of the
paradigm properly, the MI experiment can be started trial-by-trial
by clicking the ‘‘Start’’ button. If the ‘‘Full Screen Cue’’ is enabled,
the cue picture will be displayed in full screen of the software, or
else the cue picture will only be displayed in the right small area
of the panel ‘‘Motor imagery experimental settings’’.

In addition, the software also supports real-time MI feedback
to verify the performance of the MI algorithm once the MI clas-
sification model was trained and generated with MTP. Detailly,
click the ‘‘load’’ button to select a trained model file, and then
the ‘‘Enable Prediction’’, ‘‘Enable Feature Selection’’, and ‘‘Cue for
Prediction’’ checkboxes will be available. Check the ‘‘Enable Pre-
diction’’ check box to execute the motor imagery paradigm with
real-time feedback. If the trained model contains feature selection
3
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Fig. 4. The Matlab-based GUI of model training platform. The panel consists of
the following parts: (a) training settings, (b) result display.

information, then the ‘‘Enable Feature Selection’’ can be checked
to improve inference efficiency. With the default settings, no cue
is provided when the paradigm has feedback, and the cue picture
is replaced with a fixed cross picture (see Fig. 6(b)). However, if
the ‘‘Cue for Prediction’’ is checked, then the cue will be retained
to validate the consistency of the cues and feedback. According
to our previous work [15], the latency of the real-time feedback
caused by model computation will be less than 15 ms when
processing 8-channel data (with MATLAB 2019a platform running
on a desktop with 4.0 GHz i7-8700 processor and 32G RAM.),
which can fully meet the requirement of real-time feedback.

When each trial is completed, the relevant data are saved in
he ‘‘Data\MotorImageryData’’ folder under the root directory of
he software, and the file name is the trial number. Each trial file
ontains one structure variable named ‘‘MotorImagery’’. The main
ield names are ‘‘RecordData’’, ‘‘RecordRawData’’, ‘‘Sample’’, and
‘ClassOrder’’. Among them, the ‘‘RecordData’’ and ‘‘RecordRaw-
ata’’ matrix store the filtered and non-filtered EEG data of one
rial. The ‘‘Sample’’ is also a structure variable, where the field
alues ‘‘Stage 1’’ to ‘‘Stage 4’’ provide the last sample index of
ach stage, and the field value ‘‘Cnt’’ provides the total number
f recorded samples for the current trial. The ‘‘ClassOrder’’ vector
tores the class label of all trials, and the label of the current trial
an be found by indexing the trial number.

.2.2. Model training platform (MTP)

.2.2.1. Training settings. As shown in Fig. 4, In the training set-
ings panel, various training hyper-parameters can be set. First,
lick the ‘‘Brower’’ button to select the folder containing train-
ng data (the default path is ‘‘Data\MotorImageryData’’). Then,
lick the ‘‘Load’’ button to verify and load the training data

to the workspace. Two CSP modes, namely the traditional CSP
method [21] and the div-CSP method [22], are available for
feature extraction. A wrapper-based feature selection algorithm
will be applied if the ‘‘Enable Feature Selection’’ is checked. To
accelerate the training procedure, the ‘‘Enable Parallel Comput-
ing’’ can be checked. With this setting, the software will use the
‘‘parfor’’ command to enable parallel computing using Matlab
parallel pool. The training scheme is the same as our previous
work [15]. In brief, the raw EEG signals are first segmented
into 297 Time–Frequency Segment (TFS) according to a certain
scheme. Then all the TFS features are concatenated and fed into
the SVM with linear kernel for classification. With wrapper-based
feature selection, half a number of the TFS features can be dis-
carded, improving the efficiency and accuracy of the model. For
the technical details of the CSP/divCSP feature extraction module
and of the classifier, please refer to our previous publication [15].

The MTP supports two training modes: ‘‘Cross-Validation’’
mode and ‘‘Train with all data’’ mode. The cross-validation mode
is used to evaluate the MI classification performance of the sub-
jects and visualize their Time–Frequency Reaction Map (TFRM).
We can define the number of folds in cross-validation by editing
the ‘‘Cross-Validation’’ text box. Notably, the greater the fold
number, the more accurate TFRM and mean accuracy will be
estimated. On the other hand, the ‘‘Train with all data’’ mode
takes all the data as training data, and a model file will be
generated after training. The model file contains a structure
variable ‘‘ParaImagery’’. In its field variables, the ‘‘Wcsp’’ stores
all of the trained CSP projection matrices, the ‘‘accMat’’ stores TFS
scores, the binary variable in ‘‘PatCspIdx’’ stores the indexes of the
selected TFS, the ‘‘Trained_LSVM’’ is the SVM classifier with linear
kernel.

2.2.2.2. Result display. The result display panel displays the cross-
validation results in the left region and visualizes the TFRM in
the right area. The visualization of TFRM is achieved by averaging
the TFS scores in corresponding time and frequency bands. The
detailed procedure is provided in [15]. By visualizing the TFRM,
the time–frequency reaction characteristic of the subject can be
obtained and further analyzed.

3. Illustrative examples

Fig. 2 shows an example of the running software. First, the
‘‘Serial Port’’ is set to ‘‘COM6’’, and then click the ‘‘Open Serial
Port’’ and ‘‘Start Receiving Data’’ Buttons in turn to connect the
OpenBCI device. Here, we can see that the ‘‘Load Rate’’ is 16%,
and the ‘‘Unpacked Data’’ is 125 (with the default refresh interval
setting to 0.5s), which means that the sampling rate is 250 Hz. A
4-order band-pass IIR filter with cut-off frequencies between 4 Hz
and 35 Hz is applied to 8-channel EEG data for preprocessing.
Fig. 2(b) illustrates an example EEG stream with the subject’s eye
closed. It can be seen that the EEG stream contains quantities of
rhythmic waves. From Fig. 2(c), we can observe that the 10 Hz
frequency component (Alpha band) is significantly different from
other frequency components, which matches the conclusion of
the previous studies [23]. The topography shown in Fig. 2(d) indi-
cates that the Alpha band in the occipital region is activated. This
phenomenon is also observed in many previous studies [24,25].

As conducting the motor imagery experiment, Fig. 5(a)–(d)
present an example of the four stages of one trial, which enables
the ‘‘Full Screen Cue’’. At the end of each trial, a warning box will
be appeared to check if the user wants to save this trial. If the
displayed EEG data contain obvious noises, the user can select
‘‘No’’ to discard this trial. When all the trials are conducted, we
can open the MTP software to train the obtained MI-EEG data.

As illustrated in Fig. 4(a), the ‘‘Data Path’’ is first set to the
path filled in the ‘‘Save Path’’ of Fig. 2(f), and click the ‘‘Load’’
4
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Fig. 5. An example of the motor imagery paradigm. (a)–(d) illustrate the panel
display of the RTEEGAP from stage 1 to stage 4, respectively.

Fig. 6. An example of the motor imagery prediction paradigm. (a)–(d) illustrate
the panel display of the RTEEGAP from stage 1 to stage 4, respectively.

button to verify and load all the training data. Next, the ‘‘CSP
Mode’’ is selected as ‘‘div-CSP’’, and the feature selection and
parallel computing function are enabled. After clicking the ‘‘Cross-
Validation’’ button, we can wait for the algorithm to finish. The
command window of Matlab will display the executing progress
of the algorithm. When the algorithm is finished, the results
are displayed in Fig. 4(b). It can be seen that the experimental
subject achieves a mean accuracy of 88.33% in the 5-Fold cross-
validation scheme. Simultaneously, the right region in Fig. 4(b)
demonstrates the TFRM of the subject. We can observe that
the 10-15 Hz frequency band in 2-3s is most activated, and a
high-frequency band of around 25 Hz is also activated. However,
the activated high-frequency band appears in the last second,
which indicates that the subject could enhance the performance
of executing motor imagery tasks by increasing the time of motor
imagery. Lastly, if obtained mean accuracy matches the real-time
feedback requirement, the ‘‘Train with all data’’ button can be
pressed to generate the motor imagery model.

The RTEEGAP supports real-time motor imagery feedback. In
etail, click the ‘‘Load’’ button to select the trained model file
nd enable the ‘‘Enable Prediction’’ check box. After that, click the
‘Start’’ button to execute the motor imagery task with real-time
eedback. As shown in Fig. 6, a four-stage paradigm is conducted,
here the last stage presents the predicted motor imagery task.

4. Impact

With the MartMi-BCI, users can easily design proper MI
paradigms and conduct EEG-based MI experiments using the
RTEEGAP module. The time–frequency-spatial EEG analysis and
real-time feedback are supported. Users can also collect their own
EEG databases with markers by RTEEGAP. Meanwhile, the MTP
helps users automatically train the high-performance model of
multiclass MI classification introduced in our published work [15].
It is suggested that the classification accuracy and computational
complexity of the model outperform traditional MI-BCI algo-
rithms [23,26,27]. Benefiting from the high efficiency of the MI
classification model, the MartMi-BCI can achieve excellent real-
time performance. The whole software system is implemented in
GUIDE of Matlab, and the hardware is based on Open-BCI, which
is user-friendly for new researchers and easy to be modified and
customized by skilled researchers.

5. Conclusion

A user-friendly MI-BCI platform, MartMi-BCI, is established
to let users of all levels achieve their EEG-related studies more
conveniently and efficiently. Two modules, namely RTEEGAP and
MTP, are involved in MartMi-BCI. RTEEGAP enables users to de-
sign MI paradigms, conduct efficient MI experiments, and ana-
lyze EEG signals, while MTP provides a user-friendly platform to
train high-performance MI classification models. Currently, the
software supports the connection with an open-source OpenBCI
device and a CSP-based EEG classification algorithm. In future
works, we will continue to update this software to support more
EEG recording devices and more EEG classification algorithms.
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