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Abstract 

Traditional convolutional neural networks (CNNs) often suffer from high memory consumption and 
redundancy in their kernel representations, leading to overfitting problems and limiting their application 
in real-time, low-power scenarios such as seizure detection systems. In this work, a novel cosine 
convolutional neural network (CosCNN), which replaces traditional kernels with the robust cosine kernel 
modulated by only two learnable factors, is presented, and its effectiveness is validated on the tasks of 
seizure detection. Meanwhile, based on the cosine lookup table and KL-divergence, an effective 
post-training quantization algorithm is proposed for CosCNN hardware implementation. With 
quantization, CosCNN can achieve a nearly 75% reduction in the memory cost with almost no accuracy 
loss. Moreover, we design a configurable cosine convolution accelerator on Field Programmable Gate 
Array (FPGA) and deploy the quantized CosCNN on Zedboard, proving the proposed seizure detection 
system can operate in real-time and low-power scenarios. Extensive experiments and comparisons were 
conducted using two publicly available epileptic EEG databases, the Bonn database and the CHB-MIT 
database. The results highlight the performance superiority of the CosCNN over traditional CNNs as well 
as other seizure detection methods.  

Keywords: Cosine convolutional neural network (CosCNN); cosine kernel; network quantization; seizure 
detection; Field programmable gate array (FPGA); Electroencephalogram (EEG). 
 

1. Introduction  

Convolutional Neural Networks (CNNs) are the most widely used deep learning approach developed 
in the past decade, and have become a mainstream method in the field of computer vision (Khan et al., 
2018; Krizhevsky et al., 2012) and natural language processing (Li, 2017). Traditional CNNs contain 
multiple convolutional layers, where a set of filters is learned in each convolutional layer to obtain 
discriminative deep-learned features (Goodfellow et al., 2016; LeCun et al., 2015). Unlike the traditional 
hand-crafted feature engineering approaches that model the natural data without the learning process, 
CNN is a typical data-driven model that can directly train feature extractors from large data sets using the 
backpropagation algorithm, which demonstrates superior performance and can extract more inherent 
features than conventional feature engineering methods. In view of the strengths of CNNs in feature 
extraction, they have also been extensively investigated and applied to various EEG classification tasks, 
such as seizure detection (Shoeibi et al., 2021; Thuwajit et al., 2021). However, the performance of 
traditional CNNs is highly dependent on complex model parameters and expensive training, causing 
model redundancy and overfitting problems, especially when the training dataset is limited in size (Everitt 
& Skrondal, 2002). Furthermore, the large number of parameters in deep CNNs will result in significant 
computational complexity, and the inherent "black-box" nature of learned convolutional kernels 
inevitably leads to low interpretability (LeCun et al., 2015).  

Epilepsy is a common neurological disorder characterized by repetitive, unpredictable, and 
short-lasting seizure attacks (Fisher et al., 2005). About 1% population around the world is affected by 
epilepsy (Thijs et al., 2019; World-Health-Organization, 2019), and the life quality of those patients is 
seriously threatened by various clinical phenomenology of epileptic seizures such as impaired motor 
control and awareness loss (Elger & Hoppe, 2018). Electroencephalogram (EEG) has been widely used in 



epilepsy diagnosis (Acharya et al., 2013) and other Brain-Computer Interface (BCI) tasks (Faraji & 
Khodabakhshi, 2023; Zhang et al., 2023; Zhang et al., 2021). In recent years, an increasing number of 
studies have employed deep learning methods for EEG-based automatic seizure detection, where the 
CNN-based methods, including 1-D CNNs and 2-D CNNs, are the most popular (Shoeibi et al., 2021). 
However, as ictal EEG cannot be easily acquired in clinical settings, the available training data for 
optimizing CNNs are usually insufficient. Due to the inherent parameter redundancy in CNNs, 
CNN-based seizure detection models often result in overfitting issues. Moreover, the kernels in traditional 
CNNs lack clear physical meanings, leading to poor model robustness, which hinder the clinical 
application of CNNs in seizure detection.  

Typical characteristic waves of epileptic EEG include spike waves, sharp waves, etc., with specific 
amplitude and periodic components (Latka et al., 2003). To detect these epileptic waveforms, previous 
studies achieved considerable success in seizure detection by integrating spectral features with CNNs to 
address the overfitting issues, indicating the significance of frequency and amplitude features in detecting 
epileptic EEG signals (Shoeibi et al., 2021). For instance, Liu et al. (2020) extracted spectral features 
from intracranial EEG by S-transform and designed a CNN for seizure detection. Ozdemir et al. (2021) 
integrated the Fourier-based synchrosqueezing transform (SST) with a CNN for both seizure detection 
and prediction tasks. Nevertheless, these studies separated the process of spectral feature extraction from 
the classification process of CNNs, which necessitate laborious feature engineering, and made it 
challenging to obtain optimal EEG features and realize efficient seizure detection. Inspired by these 
works, we attempt to explore if it is feasible to embed trigonometric functions with clear amplitude and 
frequency information into a traditional CNN. More specifically, can we replace the traditional kernels in 
a CNN with trigonometric functions that require fewer parameters, thereby constructing a novel 
end-to-end compact CNN model? Such a model would enable direct extraction of spectral features from 
raw signals for classification. If feasible, the scale of parameters in CNNs can be significantly reduced to 
make the model more compact. It is also expected to alleviate the overfitting problem of CNNs with the 
new trigonometric kernels and improve the interpretability and robustness of the deep model.  

In this work, we present a novel cosine convolutional neural network (CosCNN) along with its 
hardware implementation, aiming to promote the model performance and interpretability, to compress the 
model scale, and enhance the model generalization abilities. In contrast to the traditional CNNs, CosCNN 
learns a set of cosinusoidal kernels with different amplitudes and frequencies in each convolutional layer. 
The main contributions of the present work are summarized as follows: 

 In order to address limitations of traditional CNNs such as high memory costs, poor interpretability 
and overfitting, we propose an innovative CNN model, CosCNN, where only two parameters representing 
amplitude and frequency are needed to learn in each cosine filter, significantly reducing the model size 
and enhancing the model generalization ability. To the best of our knowledge, this is the first work that 
proposes to replace traditional convolution kernels with cosine filters.  

 The CosCNN has demonstrated its higher classification ability than the traditional 1-D CNN and 
achieved state-of-the-art performance in EEG-based seizure detection tasks on CHB-MIT epileptic EEG 
database, indicating its great potential in future applications. The cosine filter can be readily integrated 
into any existing 1-D CNN architecture to obtain performance improvement. 

 A quantization algorithm is presented for the CosCNN to enable the model hardware-friendly. By 
applying the cosine lookup table and a calibration algorithm based on KL divergence, all weights can be 
quantized to 8-bit integers with seldom accuracy loss, alleviating the memory access burden. The 



proposed quantization algorithm can be used to quantize two parameters of the cosine kernel, rather than 
the full-length kernel, thus achieving fewer parameters than traditional quantization algorithms. 

 A configurable cosine convolution hardware accelerator is designed, and the whole quantized 
CosCNN is deployed on an energy-efficient Field Programmable Gated Array (FPGA) to realize real-time 
seizure detection.  

The remainder of this paper is organized as follows. Section 2 presents the related works. Section 3 
explicitly describes details of the CosCNN and its corresponding quantization method and hardware 
implementation. Experimental databases and results are elucidated in Section 4. Section 5 discusses 
experimental results and depicts the result comparison. Finally, conclusions are drawn in Section 6. 

2. Related Work 

2.1. Specially-Designed Filters in 1-D CNNs 

In recent years, attempts have been made to improve the interpretability and accuracy of deep learning 
models. The adequate design of the 1-D convolutional filter is proven to be effective for CNNs to process 
raw 1-D signals in an explainable way. Here, some mainstream specially-designed filters in 1-D CNNs 
are summarized. 

EEGNet (Lawhern et al., 2018) is a classic compact CNN architecture that is widely used in EEG 
signal classification. It contains a set of learnable temporal filters and spatial filters, with all the filters 
being implemented by the traditional 1-D convolutional filter. According to EEGNet, Thuwajit et al. 
(2021) presented an end-to-end model named EEGWaveNet for ictal EEG classification. Furthermore, 
Ravanelli and Bengio (2018) proposed the SincNet for speaker recognition, which replaced all filters of 
the first convolutional layer with filters modulated by the sinc function. Besides, some recent works 
combined the SincNet and EEGNet to enhance the model interpretability and performance in EEG 
classification tasks (Borra et al., 2020; Liu et al., 2022). Priyasad et al. (2021) adopted the customized 
SincNet model to encode each channel of the EEG signal and introduced the attention mechanism for 
multichannel ictal EEG detection. In addition to EEGNet and SincNet, some other types of 
specially-designed filters were also exploited and incorporated with CNNs to realize various time-series 
signal classifications. For example, the Gabor filter (Noé et al., 2020; Zeghidour et al., 2021) and 
Gammatone filter (Abdoli et al., 2019) were designed for raw audio signal processing, and the wavelet 
filter (T. Li et al., 2021) was applied to industrial intelligent diagnosis. 

The specially-designed 1-D convolutional filters presented in existing studies are usually served as the 
learnable frontend of 1-D CNNs to process raw signals, which means only the first convolutional layer is 
replaced by the new filter module. Although filters in the first convolutional layer are explainable and 
have fewer learnable parameters, the backend of CNNs containing the majority of learnable parameters 
still uses traditional convolutional filters. Besides, the specially-designed filters usually have longer filter 
lengths to ensure the performance of filters, which improves the computational complexity of the model. 
Moreover, most of the filters are designed for audio signal classification, and few works concentrate on 
ictal EEG classification tasks. Unlike that existing specially designed filters usually only replace the 
kernels in the frontend of the traditional 1-D CNNs, the proposed cosine kernel can replace all kernels in  
a traditional 1-D CNN, making the CosCNN more compact and interpretable. 



2.2. CNN-based seizure detection algorithms 

To achieve end-to-end feature extraction, some studies took the time-frequency representation of the 
EEG signals as the input of 2-D CNNs. Cho and Jang (2020) transformed raw ictal EEG signals into 2-D 
images using Short Time Fourier Transform (STFT) and classified them by a CNN. Liu et al. (2020) sent 
the S-transform representation of multi-channel EEG signals into a CNN with four convolutional layers 
for seizure detection. Ozdemir et al. (2021) employed SST to obtain discriminative image-based features 
and proved that it was a better feature representation than STFT when combined with a CNN. However, 
the time-frequency transform is time-consuming, and the high-resolution time-frequency image will 
increase the computational complexity of CNNs. For more efficient EEG classification, 1-D CNNs that 
fed with raw EEG signals were developed. Acharya et al. (2018) constructed a 1-D CNN architecture 
with 13 convolutional layers for the three-class classification of single-channel ictal EEG. O’Shea et al. 
(2020) proposed a fully convolutional network with 1-D convolution kernels to detect seizures in 
neonates. Wang et al. (2021) presented a stacked 1-D CNN model consisting of two parallel CNN blocks 
with different kernel lengths, which yielded promising results on two long-term multi-channel ictal EEG 
databases. In addition, combining the 1-D CNN with recurrent neural networks such as Long-Short Term 
Memory (LSTM) is another widely explored deep learning architecture in seizure detection (Li et al., 
2020; Liu et al., 2021). At present, most CNN models designed for seizure detection managed to improve 
the performance and generalization ability by modifying network architecture, loss function, input 
feature, etc. The optimization of convolutional filters according to the intrinsic characteristics of EEG 
signals was seldom considered. The presented study enhances the performance of the 1-D CNN by 
modifying the basic convolutional filter, which is fundamentally different from existing CNN-based 
seizure detection studies. 

2.3. CNN Quantization Methods 

In general, the deep-learning model is trained and inferred with the 32-bit floating-point (FP32) data 
to meet the needs of computing precision. However, significant memory and computational complexity 
are required for FP32 convolution, making the model hard to be deployed on hardware platforms such as 
FPGAs. Although some quantization-aware training methods (Jacob et al., 2018; Liang et al., 2021) were 
proposed to quantize the CNN parameter to low bit-width and achieve excellent performance, they 
required time-consuming retraining or fine-tuning. As a more practical quantization approach, the 
Post-Training Quantization (PTQ) method has recently attracted much attention (Nagel et al., 2020; 
Nahshan et al., 2021). It only needs some unlabeled data for calibration, rather than retraining the model. 
A representative PTQ method presented by Migacz (2017) leveraged the Kullback-Leibler (KL) 
divergence to determine the optimal activation threshold layer by layer. It could quantize all weights and 
intermediate activations of the popular CNN model to 8-bit integers with minimal accuracy loss. All the 
mentioned quantization methods are designed for CNNs with traditional filters, and the effective 
quantization algorithm for CNNs with specially-designed filters is seldom investigated. In this work, a 
KL divergence-based CosCNN quantization algorithm is developed to significantly reduce the memory 
occupation of the CosCNN model and make the model hardware-friendly and energy-efficient.  

On the other hand, most existing seizure detection algorithms were only offline tested in laboratory 
environments, and their testing platforms were usually the Central Processing Unit (CPU) and Graphics 
Processing Unit (GPU), which were not energy-efficient. However, the online EEG monitoring system 
deployed in low-power portable devices is highly demanded for clinical practice and personal daily use 



(Kuhlmann et al., 2018). Some traditional machine learning-based seizure detection algorithms have been 
implemented on low-power hardware platforms such as FPGAs (Feng et al., 2017; Page et al., 2014). At 
the same time, several studies also explored the feasibility of deploying deep learning-based seizure 
detection algorithms in FPGAs and other low-power embedded processors by utilizing quantized or 
fix-point CNNs. Truong et al. (2018) introduced a hardware-friendly CNN with integer inputs and 
weights for seizure detection. Nevertheless, they only simulated it on the computer rather than deploying 
it on an energy-efficient platform. Bahr et al. (2021) established a CNN-based seizure detector with four 
convolutional layers and implemented it on the low-power RISC-V processor. The common limitation of 
the current hardware-implemented epilepsy diagnosis systems is that the model performance and power 
consumption cannot be well balanced, especially for deep learning-based systems (Wei et al., 2020).  

3. Proposed Method 

In this section, we elaborate the details of the proposed CosCNN. The definition of the cosine filter is 
first introduced. Subsequently, the detailed theoretical derivations of forward and backward propagation 
are provided for cosine convolution. Following that, the parameter quantization and hardware 
implementation procedures of the CosCNN are presented. 

3.1. Cosine Filters 

Unlike convolutional filters (kernels) used in traditional CNNs, only two parameters need to be 
learned in proposed cosine filters, namely the frequency factor ω and the amplitude factor A. Suppose k 
represents the filter length, then the cosine filter ( ),mK A ω  can be defined as: 

( ) 1, = cos , {0,1,..., 1}
2m

kK A A m m kω ω −  − ∈ −  
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,                  (1) 

It can be seen that the ( ),mK A ω  is a centrosymmetric filter, which means that for the proposed 
cosine filter, the convolution operation is equivalent to the cross-correlation operation. In practice, the 
factor A and ω  in all cosine filters are sampled from Gaussian distribution with zero mean and unit 
variance at the model initialization phase. 

3.2. Cosine Convolution 

Each convolutional layer in CosCNN contains multiple input channels and output channels. For the 
ease of understanding, the simplest convolution case where only one channel is sampled from input to 
output can be considered. Let l

ix  be the i-th output value in l-th layer, lA  and lω  be the learnable 
parameters in l-th layer, 1lO −  be the feature vectors obtained from previous layer. Then the cosine 
convolution in “valid” mode, which is computed without the zero-padded edge, can be expressed as: 
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where ∗  represents the convolution operator. This is a memory-efficient implementation of cosine 
convolution since only two parameters are required for generating a cosine convolutional kernel. 
However, compared to traditional convolution, it results in a slight increase in computational complexity 
due to calculations of the cosine function. Therefore, in scenarios with limited computational resources, it 



is also feasible to calculate and store all parameters of the cosine convolution kernels after training, and 
then perform inference as with traditional convolution: 
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where ( ),l l
m mw K A ω=  are the pre-computed parameters of cosine kernel. For cosine filters with long 

length, the convolution operation can be accelerated by Fast Fourier Transform (FFT). Assume the 
convoluted feature vector 1l LO − ∈ , then the output feature vector 1l L kx − +∈  can be obtained by the 
following equation: 
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where   stands for the Hadamard product, {}L ⋅  and {}1
L
− ⋅  are the L-point FFT and inverse FFT, 

respectively. Re( )⋅  returns the real part of the input data, and 
 

L

k
⋅  truncates the feature vector from k 

to L. Fig. 1 demonstrates an example of cosine convolution with multiple input and output feature vectors. 
After cosine convolutions, batch normalization (Ioffe & Szegedy, 2015) is performed on each output 
channel to adjust the distribution of the output feature vectors and accelerate the convergence speed. 
Further, the Rectified Linear unit (ReLu) (Glorot et al., 2011) is optionally added to the batch 
normalization outputs to enhance the non-linearity of the model. For deep models with multiple stacked 
cosine convolutional layers, the max-pooling layer (Ranzato et al., 2007) is inserted between two 
convolutional layers to achieve dimension reduction and alleviate overfitting by computing the maximum 
of each specific region with a certain stride. 

3.3. Updating CosCNN 

At the training stage, the cross-entropy loss with an L2 regularization term on the amplitude factors is 
employed. Let θ  be the learnable parameter of the CosCNN, p be the number of samples in one 
mini-batch, q be the number of classes, and λ  be the regularization coefficient. Then the optimization 
of loss function E is denoted as: 
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where ( )i
jz  with respect to θ  is the total weighted sum of the last output feature vector to j-th 

categorical neuron for sample i, ijs  is the indicator that the i-th sample belongs to the j-th class. In this 
study, empirically λ is set to 0.001 in all experiments, and Adam optimizer (Kingma & Ba, 2015) is used 
to update the weights of the model. 

In this study, the backpropagation process is deployed to train the CosCNN, and the gradient of the 
amplitude factor lA  in l-th layer can be given as: 

 

Fig. 1.  The schematic of convoluting the three-channel input feature vectors with four 33-point cosine filters. The convolution is 
performed in “same” mode by padding the input feature vector with appropriate zero points to ensure the length of the input and 
output feature vector are the same. 
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where E is the loss function, lδ  is the error vector propagated from the deeper layer, flip( )⋅  denotes the 
flip function. Similarly, the gradient of the frequency factor lω  can be written as: 
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where ( ),mK A ω  is the partial derivative of ( ),mK A ω  with respect to ω , which is defined as: 
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Additionally, the error vector lδ  utilized in l-th layer is given by: 
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where ( )f ⋅  is the activation function such as ReLu, and the convolution operation in Eq. (9) is the full 
convolution. In the CosCNN, the gradient for updating cosine kernels involves calculations of two 
additional trigonometric functions ( ),l l

mK A ω  and ( ),l l
mK A ω . Unlike the traditional convolutional 

kernels which require to update every kernel parameter, the cosine convolutional kernels contain only two 
parameters to be tuned, substantially reducing memory consumption during the backpropagation process. 

3.4. Quantizing CosCNN 

To make the model more memory-saving and computationally efficient, a novel quantization 
algorithm is proposed that can quantize the weights of CosCNN to a low-bit integer format. Since the 
proposed cosine convolution has to compute the cosine function that cannot be directly quantized, a 
cosine lookup table for the cosinusoidal convolution quantization is motivated to be established. 
Meanwhile, inspired by the post-training quantization method realized in TensorRT (Migacz, 2017), a KL 
divergence-based method is employed to compute the activation quantization scale (Q-scale) and 
quantization factor (Q-factor). The detailed CosCNN quantization process is illustrated in Algorithm 1, 
where [ ]⋅  is the round function, lN  denotes the number of the cosine convolutional module, and ABW , 
BWω , actBW , BWΩ  represent the bit width of A, ω, activation outputs, and parameters in the quantized 
cosine lookup table, respectively. Notice that the proposed cosine filter is centrosymmetric, therefore only 
half the length of the quantized cosine filter is required to be computed and stored in the cosine lookup 
table Q . Actually, Q  can be further squeezed by eliminating the repeating terms. For example, a 



4096 3Q ×∈  obtained from a quantized trained model ( BWω  and k are set to 12 and 5) can be squeezed to 
721 3Q ×∈ , which reduces approximately 82.46% memory. Each cosine convolutional layer is merged 

with its following batch normalization layer before quantization to simplify the architecture and speed up 
the inference. The updated amplitude weight of the cosine filter and the bias term B can be computed as:  
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,                                 (10) 
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,                                (11) 

where Bµ  and 2
Bσ  are the mean and the variance gathered in the training stage by calculating over time 

and observation dimension, γ  and β  are the rescale factor and offset factor learned in batch 
normalization layer, 510ε −=  is a constant that improves numerical stability when the variance is very 
small. Since the range of feature vectors (activations) in each convolution layer changes with the input 
data of the model, it is important to calibrate the threshold for activations so that the quantized model can 
maintain its accuracy. In this study, the optimal activation threshold is determined by minimizing the KL 
divergence value between the normalized floating activation distribution and the normalized quantized 
activation distribution obtained from the calibration dataset. The detailed calibration procedure is 
illustrated in Algorithm 2. The KL divergence KLD  between *H  and *

QExpandH  is given by: 
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Algorithm 1 CosCNN quantization algorithm 
Input: Floating CosCNN, calibration dataset cX , and the bit width actBW , ABW , BWω , BWΩ  
Output: Quantized CosCNN 

1: 

2: 

 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

Find the absolute maximum of ω in all layers of CosCNN and compute the Q-scale: 1(2 1) | |BW
maxS ω

ω ω −= −  
Compute the Q-scale and Q-factor of the input signal using the absolute maximum of 

cX : 10 0 1(2 1) | |actBW
act c maxS M X− −= = −  

Compute the Q-scale of the parameters in quantized cosine lookup table: 12 1BWS Ω−
Ω = −  

Initialize the quantized cosine lookup table [ ]2 /2BW kQ ω ×∈  
For 1...2BWj ω=  do 

For [ ]1... / 2m k=  do 
[ ]( , ) cos( ( 1) / )Q j m S j m SωΩ= −  

End for 
End for 
For 1... ll N=  do 

Merge the convolutional layer with its corresponding batch normalization layer 
Quantize ω: [ | |]l l

Q Sωω ω=  
Find the absolute maximum of A in i-th layer and compute the Q-scale: 1 1(2 1) | |ABWl l

A maxS A− −= −  
Quantize A: [ ]l l l

Q AA S A=  
Compute the activation Q-scale l

actS  using cX  and KL divergence-based calibration method 
Compute the Q-factor of the activation of the current layer: 1/ ( )l l l l

act A actM S S S S −
Ω=  

Update the bias term: l l l
actB S B=   

End for 
Compute the dequantization factor for the last convolutional layer: 1 / lN

deQ actM S=  
Assemble the network using quantized parameters 
Return quantized network 

 



where binN  is the number of bins in *H   or  *
QExpandH .  

The cosine convolution with quantized weights can be written as: 
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where ,
l
Q ix  and 1

,
l
Q iO −  represent the i-th value of the quantized output feature vector in the l-th layer and 

the i-th value of the quantized feature vector obtained from the previous layer. The inference phase of the 
quantized CosCNNs is demonstrated in Algorithm 3. The FP32 Q-factor lM  and the FP32 bias term 

lB  in the l-th layer can also be converted to integer format by multiplying with 2 Bn  and then having it 
rounded, where Bn +∈ . After calculating convolution, the result has to multiply 2 Bn− , which can be 
implemented with an efficient bit shift operation. In this work, 23Bn =  is empirically set in all 
experiments. 

3.5. Hardware Implementation 

To verify the effectiveness and feasibility of the proposed CosCNN, we implement the quantized 
CosCNN on the Xilinx Zynq Zedboard, which has the Zynq-7000 SoC’s tightly coupled ARM Cortex-A9 
Processing System (PS) and 7 series Programmable Logic (PL). The whole hardware implementation 

Algorithm 2 KL divergence-based calibration 
Input: Calibration dataset cX  and the floating model 
Output: Activation Q-scale actS  

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

Obtain the floating activations using cX  and the floating model 
Compute the FP32 histogram H with 2048 bins using absolutized floating activations 
For 12 ...2048actBWi −=  do 

Take first i bins from H to *H , and perform normalization: * * */ ( )H H sum H=  
Quantize the *H  into 2 actBW  levels and obtain *

QH  
Expand the *

QH  to i bins and obtain *
QExpandH  

Normalize the *
QExpandH : * * */ ( )QExpand QExpand QExpandH H sum H=  

Compute the KL divergence between *H  and *
QExpandH  

End for 
Find the minimum KL divergence and record its corresponding index Hn  

Hn  multiply by the width of a bin is the optimal threshold optimalT  
Compute the activation Q-scale: 1 1(2 1)ABW

act optimalS T− −= −  
Return actS  

 

Algorithm 3 Inference phase of quantized CosCNN 
Input: Quantized CosCNN and testing sample SX  
Output: Predicted label 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

Quantize the SX : 0 0
Q SO M X=  

For 1... ll N=  do 
Compute the convolution using Eq. (13) and obtain l

Qx  
Compute the activation function (optional) 
Dequantize and quantize the output: l l l l

Q Qx M x B= +  
Compute the max-pooling and obtain l

QO  
End for 
Dequantize the output: l lN N

Q deQ Qx M x=  
Compute the fully connected layer 
Compute the softmax mapping 
Find the maximum value and its corresponding label 
Return predicted label 

 



scheme is depicted in Fig. 2. In the PL part, a configurable cosine convolution accelerator is designed 
using Vivado High Level Synthesis (HLS) tools (2019.1 version). The cosine convolution, dequantization 
and quantization of the activations, and max-pooling operation with C++ code are realized firstly. Then 
compiling them to Verilog codes and generating Intellectual Property (IP) cores as hardware accelerator 
by HLS. All loops are optimized by adding “PIPELINE progma”, an HLS command that can 
automatically pipeline the loop. Since all convolution layers share one quantized cosine lookup table, it is 
stored in Random Access Memory (RAM) block of PL. The PS is leveraged for data preparation and 
preprocessing, such as receiving EEG data, loading weights, and configuring the accelerator. Additionally, 
the FC layer with FP32 weights and softmax mapping is also computed in PS. For a CosCNN with 
multiple layers, configuration parameters of the first layer, including the number of input and output 
channels, the length of the feature vector and cosine filter, Bn , and the quantized Q-factor, are first sent 
to the accelerator in PL by AXI-Lite bus. Then the input signal or feature vector, quantized bias terms, 
and weights are sent by AXI-Full bus. When the accelerator finishes the computation, the output data is 
transferred to the PS using the same AXI-Full bus. Subsequently, the accelerator is reconfigured using the 
configuration parameters of the next layer with AXI-Lite bus, and the data previously inputted into the PS 
are fed into the accelerator for a new round of calculation by AXI-Full bus. Repeat the aforementioned 
procedures until reaching the last convolutional layer. All data defined in PS are stored in DDR-3 memory. 
The designed configurable cosine convolution accelerator is synthesized by Vivado 2019.1, and the 
routines in PS are programmed using Xilinx SDK 2019.1.  

4. Experiments and Results 

Experiments are conducted on two publicly available epileptic EEG databases, namely the Bonn 
database and the CHB-MIT database. In this section, the two EEG databases are introduced, and the 
comprehensive experimental setups and the corresponding results on these databases are presented. 

 

Fig. 2.  The hardware implementation scheme of the quantized CosCNN. 

  



4.1. Experimental EEG databases 

Two EEG databases are employed in this work to evaluate the effectiveness of the proposed method. 
The first database was collected by Bonn university (Andrzejak et al., 2001). Three subsets of the Bonn 
database, namely set B, set D, and set E, are utilized in the present study, in which each subset has 100 
single-channel EEG segments that correspond to a certain type of EEG signal. Each segment is with a 
length of 23.6 seconds in a sampling rate of 173.6Hz. In detail, set B was collected from five healthy 
volunteers with eyes closed, and set D and set E originated from five epileptic patients, where set D was 
recorded from the epileptogenic zone when the patients were in the interictal stage and set E only 
contained the EEG segments that were inspected to be seizure activity. All the EEG segments are 
band-pass filtered to frequency range of 0.53-40Hz. In this study, 10-fold cross-validation is adopted to 
evaluate the performance of the CosCNN on the Bonn database. The whole database is randomly split 
into 10 folds, and each class of the EEG data is averagely distributed in each fold. In the training phase, 
each fold of data is used as the test set in turn, and the remaining 90% of the database serve to train and 
validate the model. Within this 90%, 70% of the data are randomly selected to train the model, while the 
remaining 30% are used as validation set to monitor the generalization ability of the model and serve as 
the calibration dataset for the post-training quantization algorithm. The trained models were evaluated 
only on testing sets, with the average accuracies of 10-fold cross-validation being reported. This 
configuration aligns with the setup used in a classic deep learning-based epileptic EEG classification 
study on Bonn database (Acharya et al., 2018).  

 Another EEG database named CHB-MIT database which is used in this study is recorded from 24 
children subjects at the Children’s Hospital Boston (Shoeb & Guttag, 2010). This database consists of 
approximately 980-hour scalp EEG recordings with a sampling rate of 256Hz. Most EEG recordings have 
18-23 bipolar EEG electrodes placed in the international 10-20 system. In this work, the EEG data from 
18 common bipolar electrodes (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, 
F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ) are employed. A total of 184 
seizure events are labeled by experts in the CHB-MIT database, of which 40 seizure events are for 
training, and others are for testing. For most patients, the first seizure event is adopted as training data. 
And for patients 6, 12, 13, and 16, four to eight seizure events are utilized due to the short seizure 
duration and higher frequency of seizure attacks. Because the training data is limited, the non-seizure data 
five times the length of the seizure data is randomly selected. Correspondingly, the seizure data are 
overlapped upsampled five times to balance the training and testing sets. In order to quantize the model 
correctly and consider the imbalanced data, for each patient, 20 minutes of EEG signals without seizure 
activities are selected as the calibration dataset. In summary, a total of 3.04h recordings are used as 
training while the rest of 976.89h recordings serve as the testing set. The detailed information of this 
database is summarized in Table A.1 of Appendix A (Supplementary Material). 

The CHB-MIT database comprises continuous long-term scalp EEG recordings collected from 
clinical environments, inherently containing various types of noise and artifacts (Shoeb & Guttag, 2010). 
Before feeding them into the deep learning models for seizure detection, EEG preprocessing steps, 
including EEG segmentation and filtering, are commonly adopted. Following previous studies of seizure 
detection based on the CHB-MIT database (Evangelidis & Kugiumtzis, 2023; Yuan et al., 2018), the EEG 
recordings in the CHB-MIT database are segmented into 4-s non-overlapping segments for training and 
testing. To eliminate noises and artifacts in the CHB-MIT database, we filter each EEG segment by 



Discrete Wavelet Transform (DWT) with Daubechies-4 (Db4) wavelet. Previous studies indicated that the 
DWT with Db4 wavelet had been successfully employed for epileptic EEG classification (Faust et al., 
2015; Ficici et al., 2022). DWT decomposes the EEG signals into five scales that correspond to 64-128Hz 
(d1), 32-64Hz (d2), 16-32Hz (d3), 8-16Hz (d4), and 4-8Hz (d5). Besides, an approximation term 
corresponding to 0-4Hz (a5) is also yielded. d3, d4, and d5 scales are reconstructed to acquire the EEG 
data with the frequency band of 4-32Hz for subsequent analysis. In this study, all experiments are carried 
out in Matlab R2021a, executing on a workstation with an Intel i9-13900K CPU, an Nvidia RTX3090 
GPU, and 64 GB memory. 

4.2. Experiments and results on Bonn database 

4.2.1. Experimental setup 
To comprehensively verify the accurateness and effectiveness of the proposed CosCNN, numerous 

comparison experiments are conducted on Bonn database. As is demonstrated in Fig. 3, experimental 
CosCNN architectures with N cosine convolutional blocks are constructed, where {1,2,...,8}N ∈ . The 

last max-pooling layer is followed by a dense layer with three output neurons, which are mapped into 
probabilities of three classes by the softmax layer. Eight different filter lengths, namely 5, 9, 13, 17, 21, 
25, 29, 33, are considered in each CosCNN architecture. Besides, six different experimental settings 
shown in Table 1 are applied. Each experiment is conducted using a 10-fold cross-validation scheme, and 
the mean accuracy is reported as the performance metric. A total of 8×8×6×10=3840 models are trained, 

 
Fig. 3.  The experimental CosCNN architecture with N cosine convolutional blocks. The n-th cosine convolutional block contains a 
convolutional layer with the output channel number of 2n+1, a batch normalization layer, an optional ReLu layer, and a max-pooling 
layer with a nonoverlapping pooling length of 2. 

Table 1 

The experimental settings on Bonn dataset. 

Exp. Type Update ω Update A Update W ReLu 
1 CNN - - √ √ 
2 CNN - - √ × 
3 CNN - - × × 
4 CosCNN √ √ - √ 
5 CosCNN √ √ - × 
6 CosCNN × × - × 

Note: Exp. is the abbreviation of Experiment. W is the learnable weight 
in traditional CNNs. A and ω are the learnable weights in CosCNNs. 

 



and all the models are updated by 240 epochs in mini-batch size of 90. The learning rate was initially set 
to 2×10-4 and exponentially decreased to 2×10-5 within 240 epochs. The average training time for each 
cosine convolutional network model and traditional convolutional network model is 16.9 seconds and 
12.2 seconds, respectively. In addition, the quantized CosCNNs with 8 cosine convolutional blocks and 
various bit width and kernel length settings are deployed on the hardware platform to verify the proposed 
CosCNN quantization algorithm. 
4.2.2. Experimental results 

A comprehensive statistical analysis of the results is presented in Fig. 4. It can be observed from Fig. 
4 that for the traditional CNNs and CosCNNs, the performance of the model improves with the increase 

 
Fig. 4.  The experimental results on the Bonn database. (a)-(h) correspond to the results of the models with 1-8 convolutional 
blocks. The X-axis represents the experimental setting index. Each box presents the summary statistics of cross-validation mean 
accuracies over the models with all possible filter lengths. The t-test is conducted between all CNN and CosCNN experiment pairs, 
and the pairs with a significant difference are marked, where the solid line indicates the result of CosCNN is significantly better than 
CNN while the dashed line is the opposite. 

 
Fig. 5.  The effect of different filter lengths and experimental settings on the model performance. (a) shows the mean accuracies 
over the models with 1-8 convolutional blocks. (b) shows the mean accuracies over the deep models with 4-8 convolutional blocks.  



of the model depth. Particularly, the model with 8 cosine convolutional blocks and 5-point convolutional 
filters in Exp. 5 reaches the highest mean accuracy of 98.00%. Meanwhile, observing that the shallow 
model with ReLu has a better performance compared to the model without ReLu. However, as the model 
deepens, ReLu becomes the obstacle to learning effective features of the network. This may be because 
the shallow network urgently needs more nonlinear functions to adapt to the complicated distribution in 
training set while enough nonlinear properties are provided by max-pooling layers in the deep network. 
Another interesting phenomenon is that even if the CosCNNs do not update the cosine filters, it can still 
achieve considerably high performance, proving that the proposed cosine filter is an effective weight 
initialization method for EEG classification tasks. The t-test results indicate that CosCNNs are 
significantly better than traditional CNNs in all cases except the cases of the shallow model with ReLu. 
Fig. 5 demonstrates the effect of filter length on model performance. It is obvious that a longer filter 
length may lead to worse model performance. Nevertheless, CosCNNs are less affected by the filter 
length than traditional CNNs. This is mainly because the cosine filter adds prior knowledge to its 
frequency response, and the few learnable parameters enable the model to have better generalization 
ability. For the traditional kernel, the longer the kernel, the more the learnable weights, which makes the 

 
Fig. 6.  The experimental results on the models trained with various proportions of the original training set. The CosCNN and 
traditional CNN correspond to the experiment setting of Exp. 5 and Exp. 2. All models consist of 5 convolutional blocks, and each 
bar represents the mean accuracy over the model with all possible filter length. The error bar denotes the standard deviation.  

 
Fig. 7.  Average training process curves for CosCNN (Exp. 5) and traditional CNN (Exp. 1) with eight convolutional blocks across 
all possible filter length settings. (a) and (b) describes the changing process of the mean training loss and validation loss, while (c) 
and (d) demonstrates the changing process of the training accuracy and validation accuracy. The shaded region indicates the 
standard deviation region. 



model tends to over-fit. From Fig. 5 (b), it indicates that deep CosCNNs without ReLu (Exp. 5) achieves 
superior results over all the other experimental settings. 

Furthermore, as illustrated in Fig. 6, models are trained by using different numbers of training 
samples to explore the few-shot learning ability of CosCNNs. It can be found that the fewer the samples 
in the training set, the more obvious the performance advantage of CosCNNs, which shows that 
CosCNNs have better generalization ability and are more suitable for few-shot learning. According to the 
training progress plotted in Fig. 7, the traditional CNNs perform well on the training set and poorly on the 
validation set. In contrast, CosCNNs excel on the validation set while performing poorly on the training 
set. This demonstrates the effectiveness of incorporating cosine filters into convolutional neural networks, 
and also suggesting that cosine kernels effectively enhance the model generalization ability and prevent 
overfitting. Theoretically, traditional CNNs can also prevent overfitting by increasing the L2 
regularization coefficient. Therefore, Fig. 8 investigates the impact of different regularization coefficients 
on the performance of traditional CNNs and CosCNNs. It is observed that during training, CosCNNs 
consistently exhibit lower validation loss and higher validation accuracy compared to traditional CNNs. 
For traditional CNNs with a larger regularization coefficient (equal to 1), although their training loss 
curves are comparable to those of CosCNNs, their training accuracy and validation accuracy remain 
significantly lower than those of CosCNNs, and their validation loss is also significantly higher. This 

 
Fig. 8.  Average training process curves for CosCNN and traditional CNN with five convolutional blocks across all possible filter 
length settings. (a) and (b) describes the changing process of the mean training loss and validation loss, while (c) and (d) 
demonstrates the changing process of the training accuracy and validation accuracy. The solid and dashed lines indicate CosCNNs 
and traditional CNNs with different regularization coefficients, respectively.  

Table 2 
The experimental results with quantized CosCNN. The mean accuracy of 10-fold cross-validation is reported. The 

highest mean accuracy is marked in bold face. 

No. 
Bit width Mean accuracy (%)  

BWω - BWΩ - BWA - 
BWact 

k=5 k=33  

1 /-32-32-32 98.00 95.00  
2 8-8-8-8 86.00 72.00  
3 10-8-8-8 98.33 90.67  
4 12-8-8-8 97.00 95.00  
5 16-8-8-8 96.67 95.67  
6 12-4-4-4 52.33 51.00  
7 12-5-5-5 59.67 69.67  
8 12-6-6-6 80.00 85.67  
9 12-7-7-7 89.33 93.00  

10 12-4-8-8 71.00 83.67  
11 12-8-4-8 50.33 63.67  
12 12-8-8-4 66.67 83.33  

 



further underscores the effectiveness of cosine convolutional kernels. According to Fig. 8 (b), when the 
regularization coefficient in the loss function of CosCNNs is set to 0.001, it achieves the lowest loss value 
on the validation set. Hence, in this study, the regularization coefficient λ  in the loss function of all 
CosCNNs is set to 0.001. 

The results obtained above are with FP32 models, and the results on quantized models with different 
bit width settings are depicted in Table 2. Two models with 8 convolutional blocks and the kernel lengths 
that are set as 5 and 33 are evaluated under different bit widths of different parameters. The result with bit 
width setting of “/-32-32-32” serves as the baseline is from the FP32 model. Experiment 2-5 manifest that 
the quantized model with a kernel length of 5 can achieve the highest mean accuracy of 98.33% under 
“10-8-8-8” bit width setting, and the quantized model with a kernel length of 33 realize a mean accuracy 
of 95.67% under “16-8-8-8” bit width setting. However, the performance of the model with a kernel 
length of 33 drops 4.33% accuracy under “10-8-8-8” bit width setting. Meanwhile, the quantized cosine 
lookup table will have 65536 rows when the BWω is set to 16, which can consume numerous resources 
for the hardware platform. Therefore, the bit width setting of “12-8-8-8” is an optimum selection for 
quantizing the model. The results of experiments 6-12 prove that CosCNNs with a long convolutional 
kernel length is more robust to BWΩ, BWA, and BWact than CosCNNs with a short convolutional kernel 
length. Simultaneously, experiments 10-12 indicate that the quantized CosCNNs are most sensitive to 
BWA, followed by BWact, and least sensitive to BWΩ. Overall, the comprehensive results on quantized 
CosCNNs reveal the effectiveness and advances of the proposed CosCNN quantization method based on 
the quantized cosine lookup table and KL divergence. It is noteworthy that all these results are obtained 
from the aforementioned Zedboard hardware platform.  

4.3. Experiments and results on CHB-MIT database 

4.3.1. Experimental setup 
Since the model with 8 convolutional blocks and a filter length of 5 achieves the highest performance 

on Bonn database, a similar CosCNN architecture is established as presented in Fig. 9 to assess the 
performance of the CosCNN on CHB-MIT database. The input of the CosCNN is the preprocessed 4-s 
EEG segment with 18 channels. And numbers of output channels are 32, 32, 64, 64, 128, 128, 256, 256 
for 8 cosine convolutional layers. Each convolutional layer is followed by a batch normalization layer and 
a max-pooling layer with a non-overlapping pooling size of 2. No activation function is added. The 
feature vectors obtained from the last max-pooling layer are flattened and fed into the dense layer with 

 

Fig. 9.  The CosCNN architecture used in CHB-MIT database. 



two output neurons. Then the softmax mapping is performed on these two neurons to acquire the 
predicted score representing the seizure probability. After that, the postprocessing operations (Liu et al., 
2020), including smoothing, thresholding, and collar, are employed to remove the isolated false detection 
and improve the sensitivity and specificity of the detection results. The model was trained for 500 epochs 
with a mini-batch size of 128, and the learning rate was initially set to 2×10-4 and exponentially decreased 
to 2×10-5 within 500 epochs. 

As for the performance evaluation method, the segment-based, the event-based, and the Area Under 
the Receiver Operating Characteristic curve (AUROC)-based approaches are employed for assessing the 
performance of CosCNN on the CHB-MIT database. Three performance metrics, namely sensitivity, 
specificity, and accuracy, are computed for the segment-based approach. The sensitivity is defined as the 
percentage of the number of seizure segments correctly predicted to the number of the seizure segments 
that experts labeled. The specificity is the percentage of the number of interictal segments correctly 
predicted to the number of interictal segments marked by the experts. The accuracy is defined as the 
percentage of the number of all the EEG segments correctly labeled to the total number of the EEG 
segments. For the event-based evaluation approach, the event-based sensitivity is calculated, which is 
defined as the ratio of the number of seizure events correctly detected to the number of seizure events 
marked by experts. Besides, the False Detection Rate (FDR) is another event-based indicator that reflects 
the false alarm per hour. Moreover, the AUROC is utilized to evaluate the robustness of the model and 
compare the performance of different models intuitively. When computing the AUROC, uniformly setting 
the length of the smooth window and the collar to 24-s. Since CHB-MIT database had 24 patients, 24 
patient-specific CosCNN models were trained and the average performance metrics were reported. 
4.3.2. Experimental results 

For the segment-based evaluation scenario, a mean sensitivity of 98.12% and a mean accuracy of 
98.18% are fulfilled by the quantized CosCNN under a mean specificity of 98.19%. A total of 16 patients’ 
detection results achieve 100% sensitivity and over 99% specificity. And for the event-based evaluation 
scenario, 143 of 144 seizure events are successfully detected under an FDR of 0.69, achieving an 
event-based mean sensitivity of 99.31%. All patients except patient 18 reach an event-based sensitivity of 
100%, where half can achieve an FDR below 0.1/h. The detailed segment-based and event-based results 
can be found in Table A.2 and A.3 of Appendix A (Supplementary Material). Note that all the results 
reported in this section are with the quantized model, and the reported performance is exactly the same as 
the results obtained from the Zedboard hardware platform. Another two comparative experiments are 
conducted to highlight the advances of the quantized CosCNN. As shown in Table 3, the traditional FP32 
CNN model, FP32 CosCNN model, and quantized CosCNN model are compared. Except for the 
convolution type and quantization process, all the other experimental hyperparameters are exactly the 
same. Both the FP32 CosCNN and quantized CosCNN outperform the FP32 CNN model (p<0.05). 

Table 3 

Results comparison on the CHB-MIT database. 

Model AUROC Parameters Model Size MAC 

CNN 96.04%±7.53% 658.1k 2.51MB 3.09MB 

CosCNN 98.26%±3.43% 265.2k 1.01MB 1.59MB 

CosCNN* 98.31%±3.34% 266.4k 0.26MB 0.40MB 

Note: * represents the quantized model. MB stands for Million Bytes. 



Particularly, the quantized CosCNN model obtains a higher AUROC with a 2.27% improvement 
compared to the FP32 CNN model, while the model parameter is 59.51% reduced, the model size is 
89.64% reduced, the Memory Access Cost (MAC) is 87.06% reduced. The detailed AUROC results of 
each patient are provided in Table A.4 of Appendix A (Supplementary Material). 

5. Discussion 

5.1. Performance Comparisons 

In this study, the CosCNN is proposed and evaluated on the widely used Bonn database and 
CHB-MIT database. There also exist some other seizure detection methods evaluated on these two 
databases. As is shown in Table 4, three representative state-of-the-art 1-D CNN models designed for the 
Bonn database are reproduced and compared. The 5×10-fold validation results with significance test are 
reported. All experimental settings, including training/testing schemes and model architectures, are 
reproduced based on the original literature. According to the alternative approaches illustrated in Fig. 10, 
the performance of their corresponding CosCNN model using the same hyperparameters is fully explored. 
Notably, as shown in Fig. 10 (c) and (d), the traditional convolutional module without a maxpooling layer 
is replaced with the cosine convolutional module with a single-stride maxpooling layer that has a pooling 
size r>1 and a stride s=1. Empirically, the result is not sensitive to the pooling size of the single-stride 
maxpooling layer, and it is set to 8 in this study. As the results show in Table 4, the alternative CosCNNs 
can realize significantly better accuracies than traditional CNNs (p<0.05). Meanwhile, the model 
parameters, especially the convolutional parameters, are reduced. Since the 1-D CNN model proposed by 
Wei Zhao et al. (2020) has a longer filter length, convolutional parameters are 84.83% reduced when the 
model is converted to CosCNN model. 

On the other hand, the comparison of different state-of-the-art seizure detection methods evaluated on 

Table 4 

Comparison results on Bonn database 

Author (Year) Model Params† Paramsо Accuracy (%) p-Value 

Acharya et al. (2018) CNN 96.2k 1.31k 90.80±6.04 0.0188 CosCNN 94.8k 0.62k 93.40±4.74 

Ullah et al. (2018) CNN 83.8k 1.70k 96.93±3.49 0.0098 CosCNN 83.1k 1.10k 98.07±2.62 

W. Zhao et al. (2020) CNN 101.5k 53.00k 97.53±2.41 0.0398 CosCNN 56.6k 8.04k 98.27±2.54 

This work* CNN 902.9k 874.80k 94.20±4.75 <10-6 CosCNN 377.6k 349.44k 98.40±2.54 
Note: † represents all the parameters of the model. о represents the convolutional parameters of the model. * The model with 8 
convolutional layers and 5-point filter length is compared. 

 
Fig. 10.  The convolutional block of traditional CNN and CosCNN. (a) and (b) are the alternative scheme for convolutional 
module with maxpooling layer. (c) and (d) are the alternative scheme for convolutional module without maxpooling layer. k and c 
are the filter length and filter number of the convolutional layer. r and s are the pooling size and the stride of the maxpooling layer. 



the CHB-MIT database is demonstrated in Table 5. Li et al. (2020) combined the 1-D CNN and Long 
Short-Term Memory (LSTM) for seizure detection, with results of 95.42% segment-based sensitivity and 
94.07% event-based sensitivity on 846.23-hour EEG recordings. And Wang et al. (2021) designed a 1-D 
CNN architecture composed of two branches to detect seizure onsets, achieving higher specificity and 
lower FDR than the results we reported. However, 121 of 145 seizure events in 518-hour EEG data were 
utilized for training the models. Therefore, though some of the performance metrics are higher than ours, 
they are not fully comparable. Bhattacharyya and Pachori (2017) extracted the EEG features using 
empirical wavelet transform (EWT), obtaining an AUROC and specificity over 99%. Similarly, 
considering a selected 178-hour EEG data were leveraged, the model performance cannot be simply 
compared according to the metrics reported. Sopic et al. (2022) achieved zero FDR by using a template 
matching-based algorithm. However, the personalized seizure signature used in their method is manually 
selected, which leads to less automation of seizure detection. Overall, the proposed quantized CosCNN 
yields the state-of-the-art segment-based sensitivity and event-based sensitivity of 98.12% and 99.31%, 
with the least number of seizure events for training. These advanced results obtained indicate that the 
proposed CosCNN has strong feasibility in clinical utilization. It should be noted that the CosCNN 
architecture evaluated on the CHB-MIT database is derived from the architecture optimized on the 
single-channel Bonn database, and no specific architectural optimizations are made for the CHB-MIT 
database. Hence, better performance can be expected when the architecture is further optimized for the 
multi-channel EEG database. 
 

Table 5 
Comparison of the performance for different methods on CHB-MIT dataset 

No. Author (Year) 
EEG 
data 

used (h) 

Number 
of used 
cases 

Number of 
training / 

used 
seizures 

Segment- 
based 

sensitivity 
(%) 

Specificity 
(%) 

AUC 
(%) 

Event- 
based 

sensitivity 
(%) 

FDR 
(/h) 

1 Bhattacharyya and 
Pachori (2017) 178 23 -/157 97.91 99.57 99.9 - - 

2 Yuan et al. (2018) 958.2 24 42/187 95.65 95.75 - 94.48 0.68 

3 Selvakumari et al. 
(2019) - 24 - 97.50 94.50 - - - 

4 Li et al. (2020) 846.23 24 63/198 95.42 95.29 - 94.07 0.66 
5 Zabihi et al. (2020) 172 23 -/- 91.15 95.16 93.16 - - 
6 Wang et al. (2021) 518 24 121/145 88.14 99.62 - 99.31 0.2 
7 C. Li et al. (2021) 976.9 24 54/185 97.34 97.50 - 98.47 0.63 
8 Zhang et al. (2022) 870.44 24 73/198 93.89 98.49 - 95.49 0.31 
9 Sopic et al. (2022) 996 24 -/198 96.00 - - 90.40 0 

10  This work 979.93 24 40/184 98.12 98.19 98.31 99.31 0.69 

   

(a)                                         (b) 
Fig. 11.  Twelve cosine kernels randomly collected from the first layer of the CosCNN model (filters with a maximum frequency 
response higher than -3dB were considered). The format is the same as in Fig. 1. 



5.2. Feature Visualization 

Fig. 11 provides 12 cosine filters randomly collected from the first convolutional layer of a trained 
CosCNN model that has the same architecture as the model proposed by Wei Zhao et al. (2020). It is 
evident that filters with frequency below 30Hz are learned, which is consistent with the previous findings 
that the epileptic waveforms were mainly concentrated in the frequency band between 0.5-30Hz (Gotman, 
1982; Shoeb & Guttag, 2010). This also suggests that the CosCNN can effectively extract discriminative 
ictal EEG features. Meanwhile, to figure out how the deep network learns features layer by layer, Fig. 12 
offers the t-SNE maps of the intermediate feature vectors for each layer. It can be seen that as the number 
of layers increases, more separable features will be learned. For the traditional CNN, the features from the 
first five layers are inseparable, while layers 6-8 gradually learn the useful features. By contrast, the 
CosCNN learns separable features from the 4-th layer, and the clustering output of the last layer in 
CosCNN is lower-coupling and higher-cohesion. This proves the superior feature extraction ability of the 
CosCNN model. 

5.3. Complexity Analysis 

Compared to the traditional CNN, the proposed CosCNN with fewer learnable parameters has a lower 
memory occupation. Table 6 presents a comparison of the complexity between different types of 
convolutional modules, where u represents the size of the selected data type in Bytes, k is the kernel 
length, L denotes the length of the input and output signals (assuming that the input and output lengths are 
the same), and Cin, Cout are the number of input and output channels of the convolutional module. For the 
FP32 models, u=4, whereas for the quantized INT8 models, u=1. Notably, for the cosine convolution 
implemented with Eq. (2), the parameter scal is only 2/k of that in traditional convolution, significantly 
reducing the MAC. Due to the significantly reduced number of learnable parameters in the CosCNN 

 
Fig. 12.  The t-SNE clustering visualization of the output feature vector for each convolutional layer. The first row corresponds to 
the traditional CNN, and the second row corresponds to the CosCNN. The input seizure and normal data are 378 seizure and normal 
segments collected from the testing set of patient 12 in the CHB-MIT database.  

Table 6 

Complexity comparison of different convolution methods. 
Module Parameters MAC (Bytes) Time Complexity FLOPs 

Traditional 
convolution kCinCout 

uL(Cin+Cout)+ 
ukCinCout 

O(kLCinCout) kLCinCout 

Cosine 
convolution1 2CinCout 

uL(Cin+Cout)+ 
2uCinCout 

O (kLCinCout) ≥3kLCinCout
* 

Cosine 
convolution2 kCinCout 

uL(Cin+Cout)+ 
ukCinCout 

O (kLCinCout) kLCinCout 

Cosine 
convolution3 kCinCout 

uL(Cin+Cout)+ 
ukCinCout 

O (Llog2(L)CinCout) 6Llog2(L)CinCout 
* The FLOPs of computing cosine function are not considered. 1 Implemented with Eq. (2). 
2 Implemented with Eq. (3). 3 Implemented with Eq. (4). 
 

 



compared to the traditional CNN, along with the integration of effective periodicity prior information, 
CosCNN exhibits stronger generalization capabilities and is less prone to overfitting (see Fig. 7 and Fig. 
8). While significantly reducing the space complexity, the computation of the cosine function in cosine 
convolution modules also results in a slight increase in floating-point operations (FLOPs). Fig. 13 
compares the GPU inference time for a single sample from the Bonn database between CosCNN models 
implemented using Eq. (2) and traditional CNNs under various configurations. All values represent the 
average inference time over ten repetitions using the FP32 model. Results indicate that due to the higher 
FLOPs, the inference time of the CosCNN is slightly higher than that of the traditional model 
(approximately 1.07 times). Nonetheless, as shown in Fig. 13 (b), in shallower models, the inference time 
of CosCNN models might even be lower than the traditional CNNs due to significantly reduced MAC. 
Given that the CosCNN achieves higher accuracy with the parameter scale only about 2/k of that in the 
traditional CNN, it has considerable advantages over traditional CNN models. Meanwhile, since the 
proposed CosCNN quantization algorithm is based on Eq. (2), these complexity measures are also 
applicable to quantized cosine convolution module. Moreover, for devices with extremely limited 
computational resources, inference process of the cosine convolution module can be implemented using 
Eq. (3), which is entirely consistent with traditional convolution, thus maintaining its complexity. For 
long convolution kernels, especially when the length of the convolution kernel is similar to the length of 
the input signal, the FFT-based cosine convolution module as formulated in Eq. (4) can be employed to 
accelerate the CosCNN model.  

5.4. Evaluation of Hardware Acceleration 

 As aforementioned, a hardware accelerator is executed on FPGA for computing cosine convolution, 
and all the quantized models are deployed and tested on Zedboard. To verify the advances of the hardware 
accelerator and the effectiveness of the proposed quantization algorithm, a cosine convolution module is 
also realized in PS for comparison, which can simulate the hardware execution efficiency of the 
unquantized CosCNN running on ARM processors. Table 7 demonstrates the comparison results on 

 
Fig. 13.  Average inference time (per sample) for CNN and CosCNN models. (a) Average inference time for models with different 
filter lengths. (b) Average inference time for models with different depths. 

Table 7 

The time consumption and energy efficiency of the CosCNN deployed in Xilinx Zynq Zedboard 

Database Segment 
Length (s) 

Accelerator 
Platform† Time (s) Energy 

(J/segment) 
Bonn 23.6 PS 94.57 159.82 
Bonn 23.6 PL 1.11 1.94 

CHB-MIT 4 PS 48.01 81.14 
CHB-MIT 4 PL 1.04 1.82 

Notes: † The PS runs at 667MHz while the PL runs at 100MHz. 

 



CosCNN models with 8 convolutional blocks. According to Table 7, the FPGA-based accelerator 
implementation can achieve approximately 85× and 46× faster than the ARM-based accelerator 
implementation on models used in the Bonn database and CHB-MIT database, which is considerably 
efficient. In clinical practice, developing a real-time seizure detection system that can provide detection 
results for EEG data rapidly is crucial for providing timely intervention. The real-time seizure detection 
system can complete the data processing and output results within the short interval of data collection. 
With the FPGA-based accelerator, our system can predict a 4-second multi-channel EEG segment from 
the CHB-MIT database in only 1.04 seconds, effectively meeting real-time requirements. In contrast, 
executing the same model on an ARM processor takes 81.14 seconds to predict a single 4-second 
multi-channel EEG segment, unable to meet the necessary real-time criteria. Moreover, the FPGA-based 
accelerator requires only 1.94J to predict a 23.6-second single-channel EEG segment from the Bonn 
database, demonstrating its significant energy efficiency. Similarly, for an 18-channel 4-second EEG 
segment from the CHB-MIT database, the FPGA-based inference consumes 1.82J, significantly lower 
than the 81.14J required for inference using an ARM processor. It can be estimated that a battery with a 
capacity of approximately 2200mAh and a voltage of 5V is sufficient to process the 24-hour EEG data 
from the CHB-MIT database. These satisfactory results indicate the great potential and feasibility of the 
proposed CosCNN and its corresponding quantization method applying to low-power real-time portable 
devices for seizure detection. 

Table 8 illustrates the resource utilization of the synthesized circuit in PL for the CosCNN model used 
in CHB-MIT database. Besides, the total on-chip power of the hardware system is 1.762W, where the 
static power is 0.144W (8.2%), and the dynamic power is 1.617W (91.8%). For the dynamic power, PS 
occupies 1.546W (95.6%), and PL occupies 0.071W (4.4%). The above information indicates that the 
designed circuit is highly efficient in terms of power and resource utilization. 

6. Conclusions 

In this work, a novel cosine convolutional neural network (CosCNN) is presented to address the 
limitations of traditional CNNs, particularly in overfitting problem, space complexity, and feature 
extraction ability, and its effectiveness is demonstrated in seizure detection tasks. By utilizing unique 
cosine kernels modulated by only two learnable parameters, CosCNN not only significantly reduces 
memory cost but also improves model performance and interpretability. Its detailed theoretical derivations 
of forward and backward propagation, and loss function are also provided. In addition, a new quantization 
method for the CosCNN model is proposed, which promotes the co-design of the algorithm and hardware 
while reducing the memory access cost of the model without causing accuracy loss. Moreover, a cosine 
convolution accelerator with the quantized CosCNN is implemented on the low-power Xilinx Zynq 
Zedboard, achieving a real-time seizure detection system. To evaluate the effectiveness of the CosCNN, 
two widely used epileptic EEG databases are employed. Results show that the generalization and feature 
extraction ability of the proposed CosCNN is superior to the traditional CNN, and competitive 

Table 8 

The resource utilization in PL of Zedboard for the CosCNN model used in CHB-MIT database 

Resource Total Used Utilization 
LUT as Logic 53200 5069 9.53% 

LUT as Memory 17400 352 2.02% 
Flip Flop (FF) 106400 6625 6.23% 
Block RAM 140 10.5 7.5% 

DSP (DSP48E1) 220 12 5.45% 
 



performance is yielded on the Bonn database and CHB-MIT database with fewer model parameters and 
memory costs. Due to the calculation of cosine functions, the training and inference time of a CosCNN is 
a bit higher than that of a traditional CNN with the same kernel length. In our future work, we will further 
lower the computational complexity of cosine convolution while reducing memory costs, for example, by 
utilizing a more efficient implementation of cosine functions and developing an FFT-based fast cosine 
convolution algorithm. Besides, we will further optimize the hardware implementation of CosCNNs by 
introducing efficient FFT processors for better meeting the needs for practical use and portable 
monitoring devices, and apply CosCNNs to EEG-based brain-computer interface (BCI) tasks (Bi & Chu, 
2023; Mammone et al., 2023) in low-power scenarios. 
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